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AbstracL We obtajn the numeaical solution of the Smoluchowski kinetic equation for model 
kemels U(M1.  M2)  ci ( M I  + M z ) ~  and U ( M 1 ,  M z )  ci (MIMz)*/ ' ,  0 < A < 2. We show that 
the behaviour of the solution for the kemel U ci ( M I  +Mz)' at 0 < A < 1 and U ci ( M I  Mz)'/' 
at 0 < A < 2 becomes self-similar after some time. The shape of the scaling function is 
analysed: in particular, a simple approximate expression for it at U a ( M I  + M2)' is found. 
An interesting result is obtained for U ci ( M I M ~ ) * / ~ ,  0 c A < 1: the asymptotic behaviour 
of the scaling function proved to be non-power. We develop the procedure for determining 
tcr, the critical indices and he exponent of the. power-laW asymptoties of the Smoluchowski 
equation solution. The concrete values of these quantities for the model kemels are obtained. 
The stability conditions of the algorithm for numerical solving are analysed. The possibilities 
afforded by numerical solution for investigation of the Smoluchowski equation are discussed. 

1. Introduction 

The Smoluchowski kinetic equation] 

which describes the evolution of the mass distribution function f ( M ,  I) of p e c l e s  due 
to coalescence, is used in different branches of physics: geophysics (coalescence of water 
drops in clouds) [l], physical chemistry (coagulation and gel formation) 121, astrophysics 
(mergers of clouds in interstellar medium, mergers of galaxies) [3,4]. 

In particular, the solution of the Smoluchowski equation allows us to obtain the mass 
distribution function of galaxies formed due to mergers. This, in turn, gives us the possibility 
of finding the time dependence of the density of quasars as well as their luminosity 
distribution in the model [5,6] which relates the activity of galactic nuclei to mergers. 

The function U(M1, Mz), which appears in the equation as a kernel, characterizes the 
probability of the coalescence of two particles with masses MI and Mz. Usually,it is 

t In this work we use lhe continuous version of the equation. Note also that in the litemure the definition of U 
often differs from ours by the factor 2. This means thal all times in our article differ by the same factor. 

0305470/95/072025+15$19.50 @ 1995 IOP Publishing Ltd 2025 
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considered to be a homogeneous function of degree A, and its asymptotic properties are 
described by the parameters I.L and U: 

U(uM1, aMz)  = a”(M1, Mz) 

U ( M I ,  Mz) %constant MIM,” M I  > MZ 
p + v = A .  

(In applications of (1) to coagulation there is a physical constraint v 6 1, but in astrophysics 
(mergers of galaxies) the case v > 1 is very important (see U(M1, Mz) below).) 

Exact analytical solutions of the Smoluchowski equation are known only for the three 
cases: U = constant; U M (MI + Mz); U M MlMz; and for some of their linear 
combinations (see [1,2,7] as reviews, see also original works [S, 91). There are analytical 
asymptotics for some kernels. These, however, are not known for all kernels and are 
often based on the hypothesis that the behaviour of the solution is self-similar, which itself 
requires verification. In this connection, numericai solution of equation (1) is necessary. 

In this work we investigate the solution of the Smoluchowski equation for two classes 
of model kernels: U M (MI + M z ) ~  and U M ( M ~ M Z ) ’ / ~ ,  0 e h 6 2. There is an exactly 
solved case, which can be used for a test, in each of the classes: A = 1 and A = 2 respectively 
(and the solved case U = constant belongs to both classes). The kernel U M (MI + M #  
with A = 2 appears in the simple model 151 for mergers of galaxies at small masses. The 
probability of merger at large masses in the same model is U M ( M I  + Mz)(M,8 + M;), 
,6 = 0.3-0.5; this kernel belongs to the same class /I = 0, and its properties are analogous 
to those of the kernel U M ( M I  + Mz)‘. The probability of merger, proportional to the 
product of masses U 0: MjMz,  is also possible for galaxies under certain conditions [lo]. 
The kernel U M (MIMz)”’ also arises in a certain model of aggregation of clusters in 
dispersed systems [2 ] .  In this work we consider both the case A > 1, comesponding to the 
critical behaviour of the system, and A < 1. The initial distribution is taken in the form 

f d M )  = (NOfM.) exp(-WM.). (2) 

The solution of the Smoluchowski equation is known to quickly lose the details of the initial 
distribution at large masses, if fo decreases rapidly (< exp(-kM)). So, the choice of the 
initial distributions is not very important. 

In section 2 the method we use for solving the Smoluchowski equation is described 
and the problem of the stability of the algorithm is discussed. In particular, we show that 
for rapidly growing kernels the required time stepsize decreases with the limit mass Mms. 
In section 3 dependence of the solution  on the limit mass M-, for which computations 
are executed, is investigated. For U M ( M I  + Mz)’, A > 1 the value of Mm proved to 
influence strongly the solution; for A < 1, as well as for U M ( M I M Z ) ~ / ~ ,  this influence is 
weak. In section 4 we explore the cases for which the solution shows self-similar behaviour 
and the shape of the scaling function. In particular, we show that for U M (MI + Mz)’, 
A e 1 this function has power-law asymptotics; for U M (MlMz)’/’, A e 1 the asymptotics 
are non-power and do not coincide with the analytical expression M-(l+l) known before 
(figures l(c) and 5(6) give a very interesting and important result that the asymptotics 
are non-power). In section 5 the exponents of the power-law intermediate asymptotics of 
f (M, t). the critical indices for A > 1 and the values oft, are considered. The conclusions 
are in section 6. 
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2. Methods for numerical solution of the Smoluchowski equation and their,stability 

2.1. Solution methook 

To solve differential equation (1) we used the second-order Runge-Kutta method. The 
collision integral on the right-hand side was computed by the trapezoidal formula. In order 
to obtain the distribution function in a wide mass range, the substitution of variables 

M + z = loglo(M +constant) 

was made in equation (1) (the constant was added in order to avoid expanding the range of 
integration to -w). Such a substitution is equivalent to a variable mass stepsize, increasing 
with M ,  in numerical integration. Vaxiable stepsize is often used to solve equation (1) 
numerically (see [ 1 I]). 

To compute the first term in the collision integral, one has to know the distribution 
function not only on the points of the grid Mi, but also between them (to find f ( M  - M I ) ) .  
We used interpolation by the formulat 

fi f ( M i )  f i + ~  = f ( M i + ] ) .  

In the second term of (1) the infinity in the upper integral limit was replaced by some 
large, but finite M-. The influence of the finiteness of M- on the solution is considered 
in section 3. 

To estimate the error in the present method, we compare the numerical solution with the 
exact one known for U cx (MI  + M2) and U cx M I  M2. Results, shown in figure I(a), exhibit 
good agreement. Another way to check the error is to use the total mass conservation law, 
for t < tu when A > 1 and for all t when A < 1. The total mass M = 1," M f  ( M ,  t )  dM is 
conserved in our computations with an error ++ 0.3-3%. while the inequality s ( t )  <( Mm 
is realized (s(t)  characterizes the position of the coagulation front or the so called 'mean 
cluster size', see section 4). A slow change (increase) in M is related mainly to the 
interpolation error in formula (3); this error decreases rapidly with decrease in the mass 
stepsize. As s(t )  has become of the order of M,,, the total mass begins to decrease. This 
effect is discussed in section 3. 

The main part of the calculations was done on a computer with an Intel 386SX processor 
(20 MHz), CPU time per one kernel (one A) was from several minutes to several hours, 
depending on the parameters (pure calculation time, without processing the results and 
without the time for debugging the program). 

2.2. Stability of the numerical solving algorithm 

In some cases (for rapidly growing kernels) a strange phenomenon took place. At some time 
a small distortion appeared on the plot of the distribution function; the function became non- 
monotonic. Then the distortion grew rapidly and, after a short time, the program failed (e.g. 
due to overflow or invalid floating point operation). It was found that, in these cases, a very 
small time stepsize At is necessary for the procedure to be stable, and the stepsize needed 
decreases rapidly with increasing M,-. The common condition that At must be much less 

t This formula is exact for such functions as f ( M )  = A e x p ( - k M ) .  
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Figure 1. (a)  The solution of the Smoluchowski equation with U =  MI + M2) for initial 
distribution (2). The numerical solution (full curve) shows good agreement with the e m t  
one [I]  (small rectangles). At large enough t three mass regions may be distinguished at 
M .  << M << s( f )  (s ( t )  is the position of the coagulation front. see section 4) f ( M )  o( M - a  
(a straight line in logarithmic coordinates); at M 2 s ( t )  f ( M .  t )  decreases exponentially; at 
M 5 M .  information about the initial distribution is retained. Mass in this and other figures is 
given in units M,, time in uNts l / ( c N o M f ) ,  f i n  units NuJM.. (b) The numerical solution for 
U =  MI + M z ) ~ .  A s lowly  decreasing distribution ldl is formed very early ('instantaneous 
gelation', 1141); the intermediate asymptotics seems to be non-power-law. ( c )  The numerical 
solution for U = c(MiM2)'fl. h = 0.4. The intermediate asymptoties at M .  << M << s( t )  are 
non-power-law and do not agree with the known solution M-("'): the corresponding parr of 
the curve in the figure is not straight, as il is for a power function. but convex downward. 
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Figure 1. (Continued) 

than the typical time for changing f ( M ,  t )  is insuffcient here. Thus, for U = c(Ml +M# 
the computations were canied out with the stepsize At = 2 x IO4 at M,, cs 3 x 10' and 
At = 1.5 x at M,, = 5 x lo3 (mass given in units M,, time in units I/(cNoM?)). In 
both cases At is much less than the time during which the distribution changes essentially 
(see figure l(6)). 

The explanation for this phenomenon is that the nonlinear set of differential equations, 
appearing after the integral in ( I )  is replaced by a sum, belongs to the so-called st i f f  sets 
(see for instance [12]). In such sets for stability one either has to choose a very small 
time stepsize or use special methods, stable for any At. In the former case the stiffer the 
system is the more CPU time is required. In the latter case the algorithm becomes much 
more complicated (in particular, due to the necessity of solving a set ofhonlinear algebraic 
equations at each step), much more time is required to work out the program, CPU time 
increases compared with ordinary methods but it does not depend on the stiffness of the 
system. For very stiff systems (very large Mm in our case) the latter variant would be 
preferable. However, for the values of the parameters used in this article the former variant 

The indicated instability for the Smoluchowski equation may be illustrated for the 
proved to be satisfactory. , ,  

simplest method of solving differential equations-the Euler method, where 

f(M, t + At) = f ( M ,  t )  + f ( M ,  t )A t .  
Let the error 6 f ( M ,  t )  equal zero at all grid points M j ,  except for some j = i ,  at some time 
f. Then it can be demonstrated (see appendix) that the error at the next step 

S f ( M i ,  t + At)  = - k 6 f ( M i ,  t)At 

for U = c ( M , +  Mz)' 
2cM'M 

A M  
k = -  (4) 
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for the solving method we used (AM is the mass stepsize, depending on M, M changes 
from 0 to M,,). So for Af z (At)$m = 2 / k  the error grows with time. The stability 
condition for the second-order Runge-Kutta method can be shown to be the same as that 
for the Euler method At e 2/k .  The required stepsize (At)-b decreases with increasing 
M-. Formula (4) is approximate: to find (At),m exactly one should know the eigenvalues 
of the matrix on the right-hand side of the set after linearization 1121. So we determined 
the required stepsize experimentally. 

3. Dependence on Mmpr and the limit of large Mmpr 

When solving the Smoluchowski equation numerically, we introduced a finite limit mass 
M-. up to which computations were executed. The integral from 0 to CO in (1) was 
replaced by an integral from 0 to M-. Physically this corresponds to a sink of particles 
at large masses. 

At the beginning we consider the influence of the sink in the exactly solved case 
U M M1 MZ [l]. In this case at M,, + CO the distribution is known to tend to the solution 
of the Smoluchowski equation without the sink [l, 131; this means that for large M,, the 
influence of the limit mass is small. The distribution function for U = cMIMz and finite 
M,, can be written in the form 

fMm,(M, t) = f&4, f )  exp Mc AM(t’)dt’ (5) ( l 1 
where AM(t) = Mm(t) - MM-(~)  = 1,” Mf-dM - MfMm, dM is the total 
mass difference without the sink and with it. Substituting (5) in the definition of A M  
and knowing fm(M, f), one can obtain an equation for AM@). The result is that the 
exponent in (5) is small at s( t )  << M,,, M << M,, and of order of 1 when s(t) 2 M,,. 
M - M,, (s(t) = CO at t > tcr). Thus, the influence of finite Mm, on the solution of the 
Smoluchowski equation is the following: (i) the total mass begins to decrease somewhat 
earlier than at tu; (ii) there is a rise on the right-hand end of the distribution function at 
M - M,,, t 2 ta; ( 5 )  the second moment remains large, but finite at t > tcp This 
influence tends to zero when M,, -+ CO. 

The numerical solution of the Smoluchowski equation demonstrates two cases. For 
U a (M1Mz)”’ at 0 < A < 2 and for U M (MI + Mz)’, 0 < A < 1 the influence of Mm, 
qualitatively (and quantitatively at U 3 MI Mz) is similar to the one described above. The 
situation for the kernel U E (MI + M Z ) ~  at large A (close to 2) is different. The value of 
Mm, essentially influences the behaviour of the distribution moments (figures 2 and 3). The 
distribution function differs from one for A e 1: a slowly decreasing tail to the distribution 
is formed at a very small time (figure I@)). 

According to analytical results [14], the Smoluchowski equation has no solutions for 
p e U - 1, A > 1 (at M,, = CO). This means that the limit M,, + CO does not exist for 
the solution corresponding to U M ( M I  + M#. The existence of finite M,, has physical 
meaning: coalescences may be described correctly by the Smoluchowski equation with a 
given kernel in a bounded mass range only [I, 151. In the case when the problem with 
infinite M,, has no solutions, the physical limit mass must be taken into account in the 
formulation of the problem. 
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(b )  

F w r e  2. Behaviour of the second moment of the distribution Mm(r) (in units MC2)(O)) for 
(a) U O( M i M z  and (b) U O( (MI + Md*. 

4. Self-similar behaviour of the distribution function 

As known, in many cases the Smoluchowski equation has a self-similar solution 

f(X t )  @ s-'(t)ul(M/s(t)) (6) 

where 5 = 2.for h < l~and t z 2 for b > 1 (see [2,7]). At the same time, it is not 
always known whether such a solution exists. Moreover, even if such a solution exists, the 
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Figure 3. Behaviour of the total mass for ( U )  U U MiM2 and (b) U U (MI + M d 2 .  In the 
case (b), u n l i i  (a), the larger M,, the earlier the mass begins decreasing. This is related to 
strengthening of the influence of the sink with the increase in M,=. The c w e  1 in (e) is an 
exact analytical solution [I]. the other curves 81e obtained numerically. 

mass distribution will not necessarily tend to the scaling form after a transition period [2,7]. 
Direct numerical solution of the Smoluchowski equation gives the possibility of determining 
whether the solution is self-similar. 

The results for the kernels being considered here are the following. The solution for 
U cx (MlM2)A"2 tends to the self-similar one both at 0 c A < 1 and at 1 < h < 2. The 
solution for U cx (MI + M z ) ~ ,  0 c A < 1 is also self-similar, but for A > 1 the situation is 
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different: the farther A moves fiom 1, the greater the difference between the solution and 
the scaling form (6) becomes. For A 5 1.3 the solution still appears to be self-similar; for 
A 2 1.3 this is not so. The non-scaling behaviour in this case seems to be related to the fact 
that the finiteness of the maximum mass essentially influences the solution (see section 3). 

Figure 4 illustrates the approach of distribution to (6) in the course of time. The solution 
coincides with the scaling expression in the mass range M >> M*, this corresponds to the 
argument in (6) x >> (M./s(t)). At M 5 M, the distribution retains information about 
the initial conditions. Hence, there are three mass regions: at M 5 M, the distribution 
depends on f o ( M ) ;  at M. << M << s ( f )  the intermediate asymptotics are formed 1161 (for 
U c( (MI + M# these asymptotics are M-=) and at M 2 s ( t )  it decreases exponentially 
(see figure l(a)). 

lq,, ts‘4tM.tIJ SUI, kO.4 

Figure 4. The approach of the distribution to the universal scaling form (U = c(M! + M#, 
A = 0.4). Beginning with tj. the curves for different times almost coincide, except for small 
masses. The smaller M I S  the longer the time before the solution becomes self-similar. (In 
this and the next figure s(t) was determined from M(2)(tj. For r = 2. U c 2 we have 
s( t )  c( M”)(t). However, for (9) this must fail at extremely large t because effective a 
becomes larger.) 

The numerical solution allows us to obtain the scaling function (o(x) in expression (6). 
For U cx (MI + M z ) ~ ,  A < 1 it can be approximated with high precision by the simple 
expression 

where A,  b are constants. The formula (7) is analogous to the expression for (o in exactly 
solved cases and is similar to the Schechter function used to describe the galaxy mass 
distribution 1171. The values of the exponent U, as a function of A, are given below in 
table 1. At very large x expression (7) has to fail because it does not coincide with the 
known analytical asymptotic behaviour [2 ,7] .  For U o( (M1M2)A/2 the function (o has 
a more complicated form (see figure 5(b) below and figure I@)). As will be shown in 
section 5.1, its asymptotics at x + 0 are non-power. 

q ( x )  = Ax-ce-bx (7) 
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Table 1. Exponents of the intermediate asymptotics for U a (MI + M#, 0 Q .I Q 1. 

k r r  

0.0 0.00 
0.1 0.20 
0.2 0.38 
0.3 0.55 
0.4 0.70 
0.5 0.85 
0.6 0.99 
0.7 1.12 
0.8 1.25 
0.9 1.37 
1.0 1.50 

5. Asymptotics, exponents and t,, 

As known, the self-similar solution (6) often 

(o(x) - x-m x + 0. 

IS a power-law asymptotic bl iviour 

Then a wide region with f ( M ,  f )  a M+’, corresponding to M, << M <<so), appears after 
some time [16]. The exponent a! can be obtained analytically for certain kernels, but, in 
general, its determination requires numerical computation. 

1 a phase transition takes place in the system. The phase transition may be 
characterized by the critical time tcr and the exponent r in the expression (6) ( r  = 2 for 
h < 1, c = a! for h > 1). Finding tcr and z also requires numerical computation in general. 

At h 

In this section we present such numerical computations. 

5.1. Intermediate asymptotics and a method for determining the exponent 

To determine the exponent a! in (8) we plotted the local value of the exponent 
d(log,, f ( M ,  t))/d(log,,M) as a function of M. The region of the power-law intermediate 
asymptotics f K M-= corresponds to 

The plot for U a ( M I  + Md’, h = 0.4 is shown in figure 5(a). One can see that the 
region with (Y X 0.70 does form after some time. The rise at small masses is associated 
with the influence of the initial distribution at M 5 M.; the fall at large ones is associated 
with M 2 so). 

To test the precision of the described method we determined a! for the two exactly 
solved cases: U a ( M I  + Mz) and U a MIM,. The obtained a! coincided with the exact 
values 1.5 and 2.5 respectively. 

For U K (M1M-JA/* the asymptotics proved to be non-power law. Figure 5(b) shows 
that the local exponent d(log,, f)/d(logloM) does not tend to a constant at x + 0. The 
plot at M J s ( t )  << M/s(t) << 1 is close to a straight line; therefore ~ ( x )  in this interval 
may be approximated as 
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au, M.4 

. .  

Figure 5. (a) The local value of the index d(log,, f)/d(iog,,M) for the kernel U = 
=(MI + Mdi. A = 0.4. A constant index region, corresponding to f c( M-=, is formed 
with time (the p m  between x-coordinates -3 and -0.7). As f increases so does the region 
where the c w e  coincides wilh the universal function d(log,,pr(x))/d(log,ox). (b) The same 
for U = c ( M I M ~ ' / ' .  The pIM approaches a certain universal function with time (this testify 
to self-similarity), but the asymptotics of t h i s  function at M / s  + 0 are not the constasnt 
-a = -(A+ 1). Therefore, the asymptotics of pr(x) at x + 0 are non-power. The asymptotical 
region in the figure is close to a straight line-this corresponds to ~ ( x )  % xalni+b (the part 
between x-coordinates -4 and -1). 
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Hence the obtained solution does not agree with the known analytical one with the 
asymptotic behaviour 

p(x) - x-a  x + O ,  c u = A + l .  
Note that a self-similar solution with asymptotics like expression (9) cannot be obtained 
from the integro-differential equation for q ( x )  [l, 2,7] because the integrals in this equation 
diverge. In this case for analytical investigation of the self-similar solution it is necessary 
to take into account explicitly the fact that the solution has the scaling form only at large 
enough M. 

The result for U c( (M1M2)’p, 0 < A < 1 is of great interest At first sight, it seems to 
be in contradiction with known facts. As a matter of fact, however, it is not so. At first, the 
existence of a scaling solution with asymptotics x-’-’ has not been proved. Attempts to 
obtain the first correction to x-*-’ failed, and van Dongen and Emst wrote in [7] (p 323), 
that they ‘cannot exclude the possibility that in this case no solution p(x). . . exists that 
satisfies the physical requirement that the total mass be finite’. Second, disagreement with 
x-A-l was already known [NI, but it was earlier interpreted as a transitional region. Third, 
figure l(c) shows the slope o f f  (M) at constant M to change with time. It coincides with 
the result of [19]. Fourth, detailed information about the intermediate asymptotics cannot be 
obtained from the plot for f (M) (figure 1). One can obtain this information by the method 
used in this article, that is from the plot of the local slope (figure 5). 

5.2. The mefhod for determining the critical exponents and tc, 
As mentioned above, the total mass M(t)  starts to decrease when ~ ( f )  becomes of 
order Mmm. Therefore the phase transition time f, in numerical computations cannot be 
determined as the time when the mass ceases to be constant (at large times it is not conserved 
even for A < 1). Neither can it be determined as the time when the second moment of the 
distribution M @ )  becomes infinite because, for finite M-, all moments are finite and, at 
~ ( t )  

In the present paper, tu was determined by extrapolation of the dependence of the second 
moment (pth moment M(P)(f) in a more general case). This method may be illustrated by 
the example U ci MI M2 (figure Z(a)): extending the straight line until intersection with the 
axis of abscissa, one can find t ,  = 0.25. 

The behaviour of s ( t )  and M(p) ( f )  at f -+ rcr may be derived from the differential 
equation for s ( f ) ,  obtained by substitution (6) to (1) 

M,-, M2) is almost constant. 

i ( t )  c( sA+Z--i 

s(t) c( (fer - t)-l’(’+l-r). 

Then we have 

(P > t - 1) (10) 
from the definition of M(p) and expression (6). Thus we can find both fCr and t from the 
dependence M(”)(r) at f close to fCr (for p + A). The results for t should be compared 
with the theoretical prediction f ( A  + 3). 

The procedure for determination of 5 and f, was as follows. For every moment 
ti’ we found three unknown parameters Anod), tooca’) in the formula M(p) = 
A(& - r ) - ( P + l - r ) / ( A + l - z )  using three points t i - ! ,  ti, f;+l. Then doCd)(f)  and t p d ) ( t )  
were plotted. Extrapolation to the critical point gave the values of t,, and t .  

The method was tested on the exactly solved case U ci MiMz and the partly solved 
case U ci MtMi / [ (MI  + Mz)’ - M: - M.] [Z] for which t ,  is known. The obtained values 
are in agreement with the known analytical ones. 

M ( P )  (tcr - r)-(p+l-r)/(A+l-r) 



Numerical solution of the Smoluchowski equation 2037 

5.3. The results for exponents and tcr 

Values of the exponents of the power-law asymptotics a for U & (MI + 0 < A < 1 
are presented in table 1. The limiting cases a = 0, a = 1.5 at A = 0 and A = 1 respectively 
coincide with the known exact solutions of the Smoluchowski equation. The function a@) 
is continuous at 0 4 A < 1. Scaling theory [2,7] does not give an explicit prediction 
for IY in this case, but gives some restrictions [20]. The obtained values of a satisfy the 
restrictions. 

The intermediate asymptotics of f (M, t) for U 0: ( M I  + MZ)~, 1 c A < 2, may be 
non-power: the region with a constant value of the function d(log,, f)/d(logIoM) seems 
to be absent (especially at large A, close to 2; see figure I@)). 

In table 2 we present the indices z(= a) and the values of tm for U M (M~Mz)’/’ at 
X > 1, found from the behaviour of moments M(P)(t) near tn. The obtained values of 5 

are close to $(A + 3), predicted analytically, but do not coincide with it. The difference 
between 5 and $(A + 3) does not decrease with decrease in time or mass stepsize, or 
increasing Mmm. Therefore this difference does not seem to be related to an error in the 
computation of f  (M, t ) .  However, one cannot eliminate the possibility that this discrepancy 
may be explained by the difference between the exact time dependence of M(p) and the 
asymptotic formula (10). 

Table 2. Critical exponents and t, for U = c(MIM#/’. 1 c A < 2. Critical time given for 
(2) in units l/(cNoM:) (see also lhe secand part of the footnote on p 000). 

r f ( A + 3 )  

1.1 IO . 2.05 2.05 
1.2 4.0 2.08 2.10 
1.3 2.2 2.10 2.15 
1.4 1.4 2.15 2.20 
1.5 1.01 2.19 2.25 
1.6 0.74 2.23 2.30 
1.7 0.55 2.30 2.35 
1.8 0.42 2.38 2.40 
1.9 0.32 2.44 2.45 
2.0 0.73 2.50 2.50 

6. Conclusions 

Numerical solution of the Smoluchowski kinetic equation using the methods described here 
allows us to find the mass distribution function i n ~ a  wide range of masses; to determine 
whether the solution is self-similar; to obtain the scaling function; and to find the exponent 
in case of power-law asymptotics. For A > 1 it is possible to find the critical exponents 
and tu from the behaviour of moments, on the condition that the solution is self-similar. 

The results for the kernels considered are the following. For U M ( M I  + Mz)’, A < 1 
the solution is self-similar (asymptotically); the scaling function is close to the simple 
expression (7); the intermediate asymptotics at Me (( M << s ( t )  are power law with the 
exponents given in table 1. For U M ( M I  +Mz)*, A > 1 the farther A is from 1, the greater 
the difference between the self-similar behaviour and the distribution becomes and the more 
dependent f ( M ,  t )  becomes on the value of M-. For U o( (MlM2)’/’, 0 < A < 2 the 
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solution is self-similar. The critical exponents and t,, for A > 1 are given in table 2. The 
intermediate asymptotics for A c 1 proved to be non-power and to differ from the solution 
known earlier. Some features of the numerical solutions obtained are also discussed in [Zl]. 
Note also that the properties of the solution of the Smoluchowski equation are very close to 
those of the kinetic equations which appear in the weak turbulence theory (see, e.g., [22], 
P 200). 
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Appendix 

Here we derive formula (4). For definitenes. 
the error in the distribution function S f ( M ,  t )  
grid point Mj (we shall assume that the ma. 
at the next step can be obtained from (1): 

The function f (and the. 
in (1) is calculated by t. 
used, we may assume Sj 

me CJ(MI, Mz) =  MI + Mz)’. Let 
: time be different from 0 in only one 
large, close to M,,,=). Then the error 

IM’ - 2cSf (Mj )  

‘4 j )  + M‘)’Sf (M‘) dM’. 

(11) 

le grid points only. Since the integral 
to obtain f (Mj - Mi) interpolation is 

) Mj-1 < M < M ~ + I  

otherwise 

where AMj  is the mass stepsize (at the point MI).  Then (11) leads to 

x im (1 + gy f(M’) dM’ - 2cf (Mj)  (Mj + M’)’Sf (M’) dM’. “r 
Since the stepsize A M  increases with mass (see section U), at large M j ,  the inequality 

Mj >> AMj  >> M. 
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is realized and the integral from 0 to A M  in (12) may be replaced by the integral from 0 
to CO. After this (12) may be written in the form 

m G f ( M j , t + A t )  - 2 c M * - - 6 f ( M j , t ) - 2 ~ f ( M j ) S  M (M,+M')*Sf(M')dM'. (13) 
' AMj 0 

The value of f (Mj) is very small at large Mj (see, e.g., figure l (b)) ,  so we can neglect the 
second term in (13). Then 

S f ( M j , t + A t )  M - k S f ( M j , t )  

k = 2 c M ; M f A M j .  

The analogous derivation for U = ~ ( M I M ~ ) " '  results in the formula 
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